A New Pathway for Photobleaching of $[fac-Re(bpy)(CO)_3Br]$ (bpy = 2,2'-bipyridine) by Triethylamine: Ethylation of the Bipyridine Ligand

Osamu Ishitani, Ichiro Namura, Shozo Yanagida, and Chyongjin Pac*

Department of Chemical Process Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Irradiation of [*fac*-Re(bpy)(CO)₃Br] and triethylamine in *N*,*N*-dimethylformamide resulted in photobleaching of the complex to give the 5-ethyl-2,2'-bipyridine complex (**2**), the formation of which was affected by either Br⁻⁻ or water.

The redox chemistry of $[fac-\text{Re}(bpy)(\text{CO})_3\text{Br}]$ (1) (bpy = 2,2'-bipyridine; X = Cl or Br) is of interest because of the capability of (1) to photocatalyse the reduction of CO₂ to CO by tertiary aliphatic amines.¹ Interestingly, the photocatalysis is accompanied by a photobleaching of the rhenium complexes,^{1,2} which is attributed to the formation of a hydride complex,¹ a metalloformate complex,^{1,3} and/or dinuclear complexes,⁴ though the mechanistic details are still unclear. We have found another pathway for the photobleaching of [*fac*-Re(bpy)(CO)₃Br] by triethylamine (TEA), the ethylation of the bipyridine ligand.

Irradiation of an Ar-purged solution of (1) and TEA in N,N-dimethylformamide at $>\lambda$ 400 nm gave the 5-ethyl-2,2'bipyridine complex (2) in 10–43% yields based on the quantity of (1) consumed, depending on reaction conditions, while very little evolution of H₂ or CO was observed as reported previously.¹ Diethylamine was also detected by g.l.c. Prolonged irradiation resulted in consumption of the (2) formed, accompanied by the formation of an unknown secondary product. As is shown in Table 1, the yield of (2) depends on the quantity of either water or Bu₄NBr added, reaching a maximum value in the presence of both water at 0.6–2.0 mol dm⁻³ and Bu₄NBr at 20–40 mmol dm⁻³. Higher concentrations of either resulted in a decrease of the yield. When Bu₄NClO₄ was used in place of the ammonium bromide, the yield of (2) was essentially identical with that in the absence of the ammonium salt.

The structure of (2) was deduced from its spectroscopic properties.[†] This complex shows a u.v. absorption maximum at 386 nm in CH₂Cl₂ and i.r. absorption of the CO ligands at 2030, 1920, and 1900 cm⁻¹ in tetrahydrofuran, which are almost identical with those of (1). The ¹H n.m.r. spectrum of (2) in CDCl₃ at 270 MHz shows signals for the ethyl protons at δ 1.38 (t), 2.83 (q), with J 7.6 Hz, and the seven aromatic protons at δ 7.51 (ddd, J 1.2, 5.5, 7.9 Hz, 5'-H), 7.89 (dd, J 1.8, 8.6 Hz, 4-H), 8.04 (dt, J 1.8, 7.9 Hz, 4'-H), 8.11 (d, J 8.5 Hz, 3-H), 8.15 (d, J 7.9 Hz, 3'-H), 8.89 (d, J 1.9 Hz, 6-H), and 9.06 (dd, J ca. 0.5, 5.5 Hz, 6'-H). The assignments are based on comparisons with the 1H n.m.r. spectra of the free bipyridine ligand and (1) and with those of Os^{II} and Ir^{III} bipyridine complexes.⁵ The ¹³C n.m.r. spectrum of (2) reveals resonances for the three quarternary carbons at δ 144.01, 153.03, and 155.87 and for the CO resonances at δ 189.02 and 196.87 in a 1:2 intensity ratio.

The photoethylation of (1) by TEA can be interpreted in terms of Scheme 1. The proposed mechanism is similar to that suggested for the photosubstitution reactions of p-dicyano-

[†] Satisfactory elemental analyses were obtained.

Scheme 1. MLCT = metal to ligand charge transfer. $k_1 = 8 \times 10^7 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$.

Table 1. Photoethylation of [fac-Re(bpy) ₃ (CO) ₃ Br] by TEA. ^a	
--	--

Additive	Conversion/%	Yield of (2) ^b /%
None	51	22
[Bu ₄ NBr]/mmol dm ⁻³		
10	48	30
20	47	37
40	40	43
100	32	31
200	20	28
$[H_2O]/mol dm^{-3 c}$		
0.6	53	43
1.8	60	40
• 3.0	64	39
6.0	40	32
12.0	20	11

^a For 5 cm³ solutions of N,N-dimethylformamide containing (1) (0.8-1.0 mmol dm⁻³) and TEA (1.0 mol dm⁻³) in the presence or absence of H₂O and Bu₄NBr irradiated through an NaNO₂ filter solution with a tungsten-halogen lamp (300 W) for 40–50 min at 20 \pm 2°C. ^b H.p.l.c. yields based on the quantity of (1) consumed. c [Bu₄NBr] 20 mmol dm⁻³.

benzene⁶ and methyl 4-phenylbenzoate⁷ by TEA. Electron transfer from TEA to the luminescent state of (1) certainly occurs, since the luminescence of (1) is quenched by TEA at 8×10^7 dm³ mol⁻¹ s⁻¹, a rate constant very similar to that for electron transfer from triethanolamine.² The loss of a proton from TEA⁺⁺ is a known process to give Et₂NCHMe, which then adds to the bpy ligand of (1^{-}) . The final products, (2) and diethylamine, are readily formed by a proton-coupling reaction of the Meisenheimer-type adduct. The effect of Bu_4NBr on the formation of (2) may be due to inhibition of another competitive route from (1.-), Br- loss.1,3,4

The photoethylation is probably a consequence of the localisation of an odd electron of (1^{-}) on the bpy ligand. Therefore, a similar alkylation reaction should be involved in the photobleaching of (1) by triethanolamine, which is as efficient as that by TEA. No photobleaching of (1) occurred at all with either N,N-dimethylaniline or 1,4-diazabicyclo-[2.2.2]octane, probably because of the stabilities of the cation radicals, which might favour charge recombination with (1^{-}) over deprotonation.

Finally, it should be noted that the formation of (2) decreased in a CO₂-saturated solution to one-third that in an Ar-purged solution, though the photobleaching of (1) was not affected by CO₂ saturation. This suggests that the photoethylation and the CO₂ photoreduction involve at least one common intermediate.

This work was supported by Grant-in-Aid for Special Project Research (No. 61123001) from the Ministry of Education, Science and Culture (Japan).

Received, 26th March 1987; Com. 383

References

- 1 J. Hawecker, J.-M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun., 1983, 536.
- 2 C. Kutal, M. A. Weber, G. Ferraudi, and D. Geiger, Organometallics, 1985, 4, 2161
- 3 B. P. Sullivan and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1984, 1244.
- 4 B. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, J. Chem. Soc., Chem. Commun., 1985, 1414.
- 5 J. L. Kahl, K. Hanck, and K. DeArmond, J. Inorg. Nucl. Chem., 1979, 41, 495; R. E. DeSimone and R. S. Drago, Inorg. Chem., 1969, 8, 2517
- 6 M. Ohashi, K. Miyake, and K. Tsujimoto, Bull. Chem. Soc. Jpn., 1980, 53, 1685
- 7 K. Tsujimoto, Y. Inaba, and M. Ohashi, Chem. Lett., 1983, 1113.